Development of Cu foam-based Ni catalyst for solar thermal reforming of methane with carbon dioxide
详细信息    查看全文
文摘
Using solar energy to produce syngas via the endothermic reforming of methane has been extensively investigated at the laboratory- and pilot plant-scales as a promising method of storing solar energy. One of the challenges to scaling up this process in a tubular reformer is to improve the reactor's performance, which is limited by mass and heat transfer issues. High thermal conductivity Cu foam was therefore used as a substrate to improve the catalyst's thermal conductivity during solar reforming. We also developed a method to coat the foam with the catalytically active component NiMg3AlOx. The Cu foam-based NiMg3AlOx performs better than catalysts supported on SiSiC foam, which is currently used as a substrate for solar-reforming catalysts, at high gas hourly space velocity (≥400,000 mL/(g·h)) or at low reaction temperatures (≤ 720 °C). The presence of a γ-Al2O3 intermediate layer improves the adhesion between the catalyst and substrate as well as the catalytic activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700