Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors
详细信息    查看全文
文摘
Cross-linked carbon nanofiber (CLCNF) was successfully prepared by directly carbonizing electrospun polyacrylonitrile (PAN) nanofiber. Comparing to non-cross-linked carbon nanofiber (NCLCNF) obtained via carbonizing of pre-oxidation PAN nanofiber, CLCNF shows better conductivity owing to its cross-linked structure. Then CLCNF was used as scaffold to support polyaniline (PANi) nanorods for supercapacitor electrode material. The hierarchical CLCNF/PANi composite displays a capacity of 206C g−1 at 0.5 A g−1 with excellent rate capability (remains 49% even at 800 A g−1), which is much higher than that of NCLCNF/PANi composite (17%). More interestingly, supercapacitor device based on CLCNF/PANi composite achieves 75.3% capacity retention after 10000 charge-discharge cycles at 10 A g−1, suggesting excellent cycle stability. All these experimental results indicate that this method for fabricating CLCNF is a substantial advancement towards the practical applications of carbon nanofiber in energy conversion and storage field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700