Anodic behaviour of oxidised Ni–Fe alloys in cryolite–alumina melts
详细信息    查看全文
文摘
Nickel-iron alloys have been identified as promising inert anode candidates for the Hall–Héroult process. In this study, binary Ni–Fe alloys of various compositions were subjected to short-term galvanostatic electrolysis in a cryolite–alumina bath at 960 °C. Prior to electrolysis, the anodes were oxidised at 800 °C for 48 h, forming a protective scale. Fe2O3, NixFe3−xO4 and NixFe1 − xO were identified as the major scale components using a combination of X-ray diffraction (XRD) analysis and energy dispersive X-ray spectroscopy (EDX). Anodes having Ni content of 50–65 wt % performed adequately during short-term electrolysis, operating at a steady potential of 3–3.5 V vs. AlF3/Al. Overall, it was found that the pre-formed oxide scale was effective in reducing anode wear and fluoridation. In the absence of a pre-formed scale, anodes were shown to undergo appreciable internal corrosion and/or passivation due to metal fluoride formation. Analysis of the anodes following electrolysis was performed using XRD and electron microprobe analysis (EPMA).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700