Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: Characterization and cytotoxicity evaluation
详细信息    查看全文
文摘
Pharmaceutical industries have posed challenges in the topical and transdermal administration of drugs which are poorly soluble or insoluble in water and most of organic solvents. In an approach to overcome this limitation, ionic liquid-in-oil (IL/o) microemulsions (MEs) were employed to increase the solubility of a sparingly soluble drug to enhance its topical and transdermal delivery. The formulation of MEs was composed of a blend of nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween-80) and sorbitan laurate (Span-20), isopropyl myristate (IPM) as an oil phase, and IL [C1mim] [(CH3O)2PO2] (dimethylimidazolium dimethylphosphate) as a pseudophase. Among various weight ratios of Tween-80 to Span-20 investigated in the ME systems, the ratio 3:2 showed excellent solubility and skin permeation enhancing effect for acyclovir (ACV) used as a model sparingly soluble drug. The size and size distribution of the ME droplets with and without drug were determined by dynamic light scattering. The permeability study of ACV incorporated in IL droplets as well as other formulations was performed into and across the Yucatan micropig (YMP) porcine skin, and the use of IL/o MEs has been shown to dramatically increase ACV administration. Finally, the cytotoxicity of the new carrier was evaluated in vitro using the reconstructed human epidermal model LabCyte™ EPI-MODEL12. It was found that the cell viability of IL/o MEs containing 4 wt % IL was over 80 % compared to Dulbecco's Phosphate-Buffered Salines, indicating low cytotoxicity of the carrier. Taken together these results, it can be assumed that IL-assisted nonaqueous ME could serve as a versatile and efficient nanodelivery system for insoluble or sparingly soluble drug molecules that require solubilizing agents for delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700