Theory and applications of coupled fluid-structure interactions of ships in waves and ocean acoustic environment
详细信息    查看全文
文摘
Wave induced motions and structural distortions, and machinery or propeller excited vibrations and acoustic radiations of a ship are two kinds of important fluid-structure interaction problems. The branch of ship science that describes the coupled wave induced dynamic behavior of fluid-structure interaction system is referred to as hydroelasticity. During the past three decades the development of three-dimensional hydroelasticity theories and applications gained great progress. Recently the 3-D hydroelasticity theory was further extended to account for the fluid compressibility and the effect of the ocean acoustic environment with finite water depth. A three-dimensional sono-elasticity theory was then produced. In this paper, the 3-D hydroelasticity theory and the 3-D sono-elasticity theory of ships are briefly described. To illustrate the applicability and feasibility of these theories and the corresponding numerical approaches, several examples are presented including the predictions of wave loads, rigid-body and flexible-body responses, springing and fatigue behaviors, machinery or propeller excited coupled structural vibrations and acoustic radiations, as well as design optimizations for improving safety and acoustic behaviors of ships.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700