Energy stable multigrid method for local and non-local hydrodynamic models for freezing
详细信息    查看全文
文摘
In this paper we present a numerical method for hydrodynamic models that arise from time dependent density functional theories of freezing. The models take the form of compressible Navier–Stokes equations whose pressure is determined by the variational derivative of a free energy, which is a functional of the density field. We present unconditionally energy stable and mass conserving implicit finite difference methods for the models. The methods are based on a convex splitting of the free energy and that ensures that a discrete energy is non-increasing for any choice of time and space step. The methods are applicable to a large class of models, including both local and non-local free energy functionals. The theoretical basis for the numerical method is presented in a general context. The method is applied to problems using two specific free energy functionals: one local and one non-local functional. A nonlinear multigrid method is used to solve the numerical method, which is nonlinear at the implicit time step. The non-local functional, which is a convolution operator, is approximated using the Discrete Fourier Transform. Numerical simulations that confirm the stability and accuracy of the numerical method are presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700