Development of multimodal membrane adsorbers for antibody purification using atom transfer radical polymerization
详细信息    查看全文
文摘
This contribution describes a graft polymerization strategy to prepare multimodal membranes, a new class of high-productivity adsorptive materials for the purification of therapeutic proteins. Surface-initiated atom transfer radical polymerization was used to graft poly(glycidyl methacrylate) 鈥榯entacles鈥?from the pore surfaces of macroporous regenerated cellulose membranes. Subsequently, 4-mercaptobenzoic acid was coupled to the membranes by an epoxide ring-opening reaction. ATR-FTIR measurements support successful ligand incorporation. Graft polymerization studies from cellulose-coated silicon substrates were done in parallel to measure the thickness evolution of the polymer coating, which plays an important role on protein binding capacities. Protein binding experiments with bovine immunoglobulin G show that the multimodal membranes have high equilibrium capacities, up to 150聽mg IgG/mL. The binding capacities are pH-dependent, with maximum binding at pH near the protein isoelectric point. Characteristic of multimodal adsorbers, the membranes retain about 70% of their equilibrium binding capacity at moderate ionic strength (300聽mM) and about 40% at high ionic strength (1.6聽M).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700