Stochastic feature compensation methods for speaker verification in noisy environments
详细信息    查看全文
文摘
This paper explores the significance of stereo-based stochastic feature compensation (SFC) methods for robust speaker verification (SV) in mismatched training and test environments. Gaussian Mixture Model (GMM)-based SFC methods developed in past has been solely restricted for speech recognition tasks. Application of these algorithms in a SV framework for background noise compensation is proposed in this paper. A priori knowledge about the test environment and availability of stereo training data is assumed. During the training phase, Mel frequency cepstral coefficient (MFCC) features extracted from a speaker's noisy and clean speech utterance (stereo data) are used to build front end GMMs. During the evaluation phase, noisy test utterances are transformed on the basis of a minimum mean squared error (MMSE) or maximum likelihood (MLE) estimate, using the target speaker GMMs. Experiments conducted on the NIST-2003-SRE database with clean speech utterances artificially degraded with different types of additive noises reveal that the proposed SV systems strictly outperform baseline SV systems in mismatched conditions across all noisy background environments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700