Decreasing peak flow rate with a new bag-valve-mask device: effects on respiratory mechanics, and gas distribution in a bench model of an unprotected airway
详细信息    查看全文
文摘
Reducing inspiratory flow rate and peak airway pressure may be important in order to minimise the risk of stomach inflation when ventilating an unprotected airway with positive pressure ventilation. The purpose of this study was to assess the effects of a newly developed bag-valve-mask device (SMART BAG®, O-Two Systems International, Ont., Canada) that limits peak inspiratory flow. A bench model simulating a patient with an unintubated airway was used consisting of a face mask, manikin head, training lung (lung compliance, 100 ml/cm H2O, airway resistance 4 cm H2O/l/s, lower oesophageal sphincter pressure 20 cm H2O and simulated stomach). Twenty nurses were randomised to each ventilate the manikin using a standard single person technique for 1 min (respiratory rate, 12/min) with either a standard adult self-inflating bag, or the SMART BAG®. The volunteers were blinded to the experimental design of the model until completion of the experimental protocol. The SMART BAG® vs. standard self-inflating bag resulted in significantly (P<0.05) lower mean±S.D. peak inspiratory flow rates (32±2 vs. 61±13 l/min), peak inspiratory pressure (12±2 vs. 17±2 cm H2O), lung tidal volumes (525±111 vs. 680±154 ml) and stomach tidal volumes (0±0 vs. 17±36 ml), longer inspiratory times (1.9±0.3 vs. 1.5±0.3 s), but significantly higher mask leakage (26±13 vs. 14±8 % ); mask tidal volumes (700±104 vs. 785±172 ml) were comparable. The mask leakage observed is not an uncommon factor in bag-valve-mask ventilation with leakage fractions of 25–40 % having been previously reported. The differences observed between the standard BVM and the SMART BAG® are due more to the anatomical design of the mask and the non-anatomical shape of the manikin face than the function of the device. Future studies should remove the mask to manikin interface and should introduce a standardized mask leakage fraction. The use of a two-person technique may have removed the problem of mask leakage. In conclusion, using the SMART BAG® during simulated ventilation of an unintubated patient in respiratory arrest significantly decreased inspiratory flow rate, peak inspiratory pressure, stomach tidal volume, and resulted in a significantly longer inspiratory time when compared to a standard self-inflating bag.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700