A new Particle-in-Cell method for modeling magnetized fluids
详细信息    查看全文
文摘
We present a new Particle-in-Cell method for plasma simulations. This is based on the original algorithm of FLIP-MHD, which uses a Lagrangian formulation of the macroscopic equations. A finite-difference approximation of the equations of motion is solved on a fixed (non-moving) grid, while convection of the quantities is modeled with the support of Lagrangian particles. Interpolation with first-order b-splines is used to project the conserved quantities from particles to the grid and back. In this work, we introduce two modifications of the original scheme. A particle volume evolution procedure is adopted to reduce the computational error, based on the formulation used in the Material Point Method for computational mechanics. The additional step introduces little to none computational diffusion and turns out to efficiently suppress the so-called ringing instability, allowing the use of explicit time differencing. Furthermore, we eliminate the need for a Poisson solver in the magnetic field computation with the use of a vector potential in place of the particles’ magnetic moment. The vector potential evolution is modeled with a moving grid and interpolated to the fixed grid points at each time step to obtain a solenoidal magnetic field. The method is tested with a number of standard hydrodynamic and magnetohydrodynamic tests to show the efficiency of the new approach. The results show good agreement with the reference solutions and rather fast time and space convergence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700