Role of 2-oxoglutarate dehydrogenase in brain pathologies involving glutamate neurotoxicity
详细信息    查看全文
文摘
Decreased activity of the mitochondrial thiamin-dependent 2-oxoglutarate dehydrogenase complex (OGDHC) is associated with a number of inborn and acquired neuropathologies. We hypothesized that perturbation in flux through the complex influences brain development and function, in particular, because the OGDHC reaction is linked to the synthesis/degradation of neurotransmitters glutamate and GABA. Developmental impact of this metabolic knot was studied by characterizing the brain OGDHC activity in offspring of rats exposed to acute hypobaric hypoxia at a critical organogenesis period of pregnancy. In this model, we detected the hypoxia-induced changes in the brain OGDHC activity and in certain physiologic and morphometric parameters. The changes were mostly abrogated by application of specific effector of cellular OGDHC, the phosphonate analog of 2-oxoglutarate (succinyl phosphonate), shortly before hypoxia. The glutamate excitotoxicity known to greatly contribute to hypoxic damage was alleviated by succinyl phosphonate in situ. That is, the delayed calcium deregulation, mitochondrial depolarization and reactive oxygen species (ROS) production became less pronounced in cultivated neurons loaded with succinyl phosphonate. In vitro, succinyl phosphonate protected OGDHC from the catalysis-induced inactivation. Thus, the protective effects of the phosphonate upon hypoxic insult in vivo may result from the preservation of mitochondrial function and Ca2+ homeostasis due to the phosphonate inhibition of both the OGDHC-dependent ROS production and associated OGDHC inactivation. As a result, we showed for the first time that the hypoxia- and glutamate-induced cerebral damage is linked to the function of OGDHC, introducing the phosphonate analogs of 2-oxoglutarate as promising diagnostic tools to reveal the role of OGDHC in brain function and development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700