Minimizing makespan in a blocking flowshop using genetic algorithms
详细信息    查看全文
文摘
We consider the problem of minimizing the makespan of n jobs in an m-machine flowshop operating without buffers. Since there is no intermediate storage, a job here cannot leave a machine until the machine downstream is free. When that is the case, the job is said to be blocked. This “blocking flowshop” problem is known to be strongly NP-hard for the shop having more than two machines. In this paper, we develop a genetic algorithmic approach to solve large size restricted slowdown flowshop problems of which blocking flowshop problems are a special case. Abadi (Flowshop scheduling problems with no-wait and blocking environments: A mathematical programming approach. Ph.D Thesis, Department of Industrial Engineering, University of Toronto, Canada, 1995) has established a connection between the blocking flowshop problem and a no-wait flowshop in which jobs do not wait between operations. He uses the idea of deliberately slowing down the processing of certain operations. We utilize this concept to evaluate the makespan (fitness) of the solutions generated by genetic algorithms. Computational results indicate that a genetic algorithm with optimized parameters for controlling the evolution of solutions consistently performs significantly better than the heuristic for blocking flowshops developed in a recent Ph.D. thesis by Abadi. The comparison is made for the problems with sizes up to 20 machines and 250 jobs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700