Constrained node-weighted Steiner tree based algorithms for constructing a wireless sensor network to cover maximum weighted critical square grids
详细信息    查看全文
文摘
Deploying minimum sensors to construct a wireless sensor network such that critical areas in a sensing field can be fully covered has received much attention recently. In previous studies, a sensing field is divided into square grids, and the sensors can be deployed only in the center of the grids. However, in reality, it is more practical to deploy sensors in any position in a sensing field. Moreover, the number of sensors may be limited due to a limited budget. This motivates us to study the problem of using limited sensors to construct a wireless sensor network such that the total weight of the covered critical square grids is maximized, termed the weighted-critical-square-grid coverage problem, where the critical grids are weighted by their importance. A reduction, which transforms our problem into a graph problem, termed the constrained node-weighted Steiner tree problem, is proposed and used to solve our problem. In addition, three heuristics, including the greedy algorithm (GA), the group-based algorithm (GBA), and the profit-based algorithm (PBA), are proposed for the constrained node-weighted Steiner tree problem. Simulation results show that the proposed reduction with the PBA provides better performance than the others.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700