Cervical spine injury biomechanics: Applications for under body blast loadings in military environments
详细信息    查看全文
文摘

Background

While cervical spine injury biomechanics reviews in motor vehicle and sports environments are available, there is a paucity of studies in military loadings. This article presents an analysis on the biomechanics and applications of cervical spine injury research with an emphasis on human tolerance for underbody blast loadings in the military.

Methods

Following a brief review of published military studies on the occurrence and identification of field trauma, postmortem human subject investigations are described using whole body, intact head-neck complex, osteo-ligamentous cervical spine with head, subaxial cervical column, and isolated segments subjected to differing types of dynamic loadings (electrohydraulic and pendulum impact devices, free-fall drops).

Findings

Spine injuries have shown an increasing trend over the years, explosive devices are one of the primary causal agents and trauma is attributed to vertical loads. Injuries, mechanisms and tolerances are discussed under these loads. Probability-based injury risk curves are included based on loading rate, direction and age.

Interpretation

A unique advantage of human cadaver tests is the ability to obtain fundamental data to delineate injury biomechanics and establish human tolerance and injury criteria. Definitions of tolerances of the spine under vertical loads based on injuries have implications in clinical and biomechanical applications. Primary outputs such as forces and moments can be used to derive secondary variables such as the neck injury criterion. Implications are discussed for designing anthropomorphic test devices that may be used to predict injuries in underbody blast environments and improve the safety of military personnel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700