Analysis of the effect of stiffener profile on buckling strength in composite isogrid stiffened shell under axial loading
详细信息    查看全文
文摘
In this paper, the buckling behavior of thin-walled GFRP cylindrical shells with triangular lattice patterned reinforcements formed by helical and circumferential ribs under axial force is analyzed. In this analysis, various models of composite isogrid stiffened cylindrical shells with outer diameter of 150 millimeters, shell thickness of 0.5 millimeters and height of 280 millimeters, stiffened with 6 helical and 2 circumferential ribs and all with the same material properties of shell and ribs are used. Ribs have constant section areas but different shapes and cross section profiles. The effects of these differences on buckling strengths of structures under axial load are studied. For analysis and modeling of structures, Finite Element Analysis method and ANSYS software were used. The results (elastic buckling load) for each model were derived and based on these results, ratio of buckling strengths to weight parameters were calculated for each model and were compared to results obtained from other models. The effect of profile of the ribs on the buckling of shells under axial loading can be concluded from the results. Results showed that stiffening the shells increased the buckling load from 10 % up to 36 % while decreased the buckling load to weight ratio to 42 % up to 52 % of an unstiffened shell.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700