H2 and CH4 oxidation on Gd0.2Ce0.8O1.9 infiltrated SrMoO3-yttria-stabilized zirconia anode for solid oxide fuel cells
详细信息    查看全文
文摘
Strontium molybdate (SrMoO3) as an electronic conductor was incorporated with yttria-stabilized zirconia (YSZ) to form an anode scaffold for solid oxide fuel cells. Gd0.2Ce0.8O1.9 (GDC) nanoparticles were introduced by wet impregnation to complete the Ni-free GDC infiltrated SrMoO3-YSZ anode fabrication. The effects of SrMoO3 on the electrode conductivity and GDC infiltration on the catalytic activity were examined. A pronounced performance improvement was observed both on wet H2 and CH4 oxidation for the 56?wt. % GDC infiltrated SrMoO3-YSZ. In particular, the polarization resistance decreased from 8?¦¸?cm2 to 0.5?¦¸?cm2 under wet H2 (3 % H2O) at 800?¡ãC with the introduction of GDC. Under wet CH4 at 900?¡ãC, a maximum power density of 160?mW?cm?2 was obtained and no carbon deposition was observed on the anode. It was found that the addition of H2O in the anode caused an increase of electrode ohmic resistance and a decrease of open circuit voltage. Redox cycling stability was investigated and only a slight drop in cell performance was observed after 5 cycles. These results suggest that GDC infiltrated SrMoO3-YSZ is a promising anode material for solid oxide fuel cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700