Theoretical, contemporary observational and palaeo-perspectives on ice sheet hydrology: Processes and products
详细信息    查看全文
文摘
Meltwater drainage through ice sheets has recently been a key focus of glaciological research due to its influence on the dynamics of ice sheets in a warming climate. However, the processes, topologies and products of ice sheet hydrology are some of the least understood components of both past and modern ice sheets. This is to some extent a result of a disconnect between the fields of theoretical, contemporary observational and palaeo-glaciology that each approach ice sheet hydrology from a different perspective and with different research objectives. With an increasing realisation of the potential of using the past to inform on the future of contemporary ice sheets, bridging the gaps in the understanding of ice sheet hydrology has become paramount. Here, we review the current state of knowledge about ice sheet hydrology from the perspectives of theoretical, observational and palaeo-glaciology. We then explore and discuss some of the key questions in understanding and interpretation between these research fields, including: 1) disagreement between the palaeo-record, glaciological theory and contemporary observations in the operational extent of channelised subglacial drainage and the topology of drainage systems; 2) uncertainty over the magnitude and frequency of drainage events associated with geomorphic activity; and 3) contrasts in scale between the three fields of research, both in a spatial and temporal context. The main concluding points are that modern observations, modelling experiments and inferences from the palaeo-record indicate that drainage topologies may comprise a multiplicity of forms in an amalgam of drainage modes occurring in different contexts and at different scales. Drainage under high pressure appears to dominate at ice sheet scale and might in some cases be considered efficient; the sustainability of a particular drainage mode is governed primarily by the stability of discharge. To gain better understanding of meltwater drainage under thick ice, determining what drainage topologies are reached under high pressure conditions is of primary importance. Our review attests that the interconnectivity between research sub-disciplines in progressing the field is essential, both in interpreting the palaeo-record and in developing physical understanding of glacial hydrological processes and systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700