Preliminary Testing on High-speed Railway Substructure Due to Water Level Changes
详细信息    查看全文
文摘
Water infiltration into railway subgrade due to heavy rainfall or flood is one of major factors leading to performance degradation in railways. This paper reported a full-scale physical model test on the performance degradation of a ballastless high-speed railway caused by water level changes. The tests were conducted in a dynamic testing apparatus (5 × 15 × 6 m) developed at Zhejiang University. A portion of a real high-speed railway was constructed in the testing box. Train moving loads were simulated by eight high-performance actuators acting in a predefined sequence. The water levels in the railway substructure were controlled in the testing box by a water storage tank. Both dynamic responses and accumulative settlement of the slab track-subgrade system were monitored. Test results showed that water level rising in subgrade could cause significant performance degradation of the railway. Vibration velocities at the track structure and roadbed increased faster and larger with the train speed after water level rising, as well as the dynamic soil stresses in soils. Accumulative settlement of railway subgrade grew remarkably due to water level rising in subgrade soils. That meant for the high-speed railways in service, reducing water infiltration in railway subgrade was very important to keep railway stable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700