Production of hydrogen by steam reforming of methanol over copper-based catalysts: The effect of cesium doping
详细信息    查看全文
文摘
The catalytic production of hydrogen by steam reforming of methanol was investigated using samples of copper oxide supported on alumina (Cu/Al2O3) and promoted with cesium (Cu-Cs/Al2O3). The effects of cesium content and reaction temperature on the catalytic activity were investigated. The Cu-Cs/Al2O3 catalysts exhibited higher activity and stability as compared to the undoped ones. The catalyst containing 2 wt % of cesium was the most active and at 300 °C the methanol conversion reached 94 mol % and the hydrogen selectivity 97 mol % with no detectable formation of CO. After an ageing treatment at 400 °C, methanol conversion was still close to 100 % with the cesium-doped catalyst, while the undoped catalyst drastically deactivated. X-ray powder diffraction (XRD) and XPS measurements indicate that cesium prevents the reduction of copper oxide into metallic Cu, by the hydrogen produced, and inhibits the formation of CuAl2O4 spinel upon thermal treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700