A first principles investigation of Bi2O3-modified TiO2 for visible light Activated photocatalysis: The role of TiO2 crystal form and the Bi3+ stereochemical lone pair
详细信息    查看全文
文摘
Modification of TiO2 with metal oxide nanoclusters is a novel strategy for the design of new photocatalysts with visible light activity. This paper presents a first principles density functional theory (DFT) analysis of the effect of modifying TiO2 rutile (110) and anatase (101) and (001) surfaces with Bi2O3 nanoclusters on the band gap and the nature of the photoexcited state. We show that band gap modifications over unmodified TiO2 depend on the crystal form: modifying rutile (110) results in new Bi2O3 derived states that shift the valence band upwards. On anatase surfaces, there is little effect due to modification with Bi2O3 nanoclusters, but an enhanced UV activity would be expected. Analysis of electron and hole localisation in a model photoexcited state shows enhanced charge separation in Bi2O3-modified rutile (110) but not in Bi2O3-modified anatase. The effect of the Bi3+ lone-pair on the properties of Bi2O3-modified TiO2 contrasts with SnO-modified TiO2, consistent with the weaker lone pair in Bi2O3 compared with SnO.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700