Remanent and induced magnetic anomalies over a layered intrusion: Effects from crystal fractionation and magma recharge
详细信息    查看全文
文摘
The Bjerkreim-Sokndal (BKS) norite – quartz mangerite layered intrusion is part of the early Neoproterozoic Rogaland Anorthosite Province intruded into the Fennoscandian shield in south Norway at ~ 930 Ma. The BKS is exposed over an area of 230 km2 with a thickness of ~ 7000 m and is of economic interest for ilmenite, magnetite and apatite deposits. From the point of view of magnetic minerals, in the course of fractional crystallization and magma evolution, the ilmenite becomes less Fe3+-rich reflected by a change from ilmenite with hematite exsolution to nearly pure ilmenite. Magnetite starts to crystallize relatively late in the intrusive history, but its crystallization is interrupted by influxes of more primitive magma. The variations in aeromagnetic and ground-magnetic anomalies measured over the BKS can be explained in terms of the measured magnetic properties of NRM, susceptibility, and hysteresis presented here, and in terms of mineralogy. Early layers in the intrusion contain hemo-ilmenite. As the magma evolved and magnetite started to crystallize, this caused a distinct change over the layering from remanence-controlled negative anomalies to induced positive anomalies. When new, more primitive magma was injected into the system, hemo-ilmenite returned as the major oxide and the resulting magnetic anomalies are again negative. The most dramatic change in the magnetic signature is in the upper part of the intrusion in MCU IVe, where magnetite became a well established cumulate phase as indicated by susceptibility, but its induced magnetization is overcome by large NRMs associated either with hemo-ilmenite, or with hemo-ilmenite and magnetite exsolved from pyroxenes. The average natural remanent magnetizations change from ~ 3 A/m in MCU IVd, to 15 A/m in MCU IVe, and back to 2 A/m in the overlying MCU IVf, producing a strong negative remanent anomaly that has been followed along strike for at least 20 km by ground-magnetic measurements. The highly varied magnetic properties of this intrusion, caused by varied magmatic crystallization of combinations of opaque minerals, illustrate some of the possibilities to be considered in evaluating crustal magnetic anomalies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700