Tailing DNA aptamers with a functional protein by two-step enzymatic reaction
详细信息    查看全文
文摘
An efficient, quantitative synthetic strategy for aptamer-enzyme conjugates was developed by using a two-step enzymatic reaction. Terminal deoxynucleotidyl transferase (TdT) was used to first incorporate a Z-Gln-Gly (QG) modified nucleotide which can act as a glutamine donor for a subsequent enzymatic reaction, to the 3鈥?OH of a DNA aptamer. Microbial transglutaminase (MTG) then catalyzed the cross-linking between the Z-QG modified aptamers and an enzyme tagged with an MTG-reactive lysine containing peptide. The use of a Z-QG modified dideoxynucleotide (Z-QG-ddUTP) or a deoxyuridine triphosphate (Z-QG-dUTP) in the TdT reaction enables the controlled introduction of a single or multiple MTG reactive residues. This leads to the preparation of enzyme-aptamer and (enzyme)n-aptamer conjugates with different detection limits of thrombin, a model analyte, in a sandwich enzyme-linked aptamer assay (ELAA). Since the combination of two enzymatic reactions yields high site-specificity and requires only short peptide substrates, the methodology should be useful for the labeling of DNA/RNA aptamers with proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700