Transcranial photo-inactivation of neural activities in the mouse auditory cortex
详细信息    查看全文
文摘
Flavoprotein fluorescence in the brain is intimately coupled with neuronal aerobic energy metabolism. If flavoproteins are photobleached, neural activities may be affected owing to dysfunction in aerobic energy metabolism in mitochondria. We tested this possibility in cortical slices from mice, and found that exposure to blue light (λ = 475 nm) derived from a 20 mW diode laser for 50 min suppresses trans-synaptic components of field potentials. This finding formed the basis of a transcranial photo-inactivation technique, that was used to investigate auditory signal transmission between the anterior auditory field (AAF) and the primary auditory cortex (AI) in anesthetized mice. Cortical responses in AAF and AI, elicited by 5 kHz tonal stimuli, were visualized using transcranial flavoprotein fluorescence imaging. After determining responsive areas in AAF and AI, the auditory cortex was exposed to the blue diode laser via the intact skull, while either AAF or AI was protected with a piece of carbon paper. Although the photo-inactivation of AI had no significant effect on the fluorescence responses in AAF, the photo-inactivation of AAF significantly reduced the fluorescence responses in AI, indicating the presence of auditory signal transmission from AAF to AI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700