Infrared long nanosecond laser pulse ablation of silicon: Integrated two-dimensional modeling and time-resolved experimental study
详细信息    查看全文
文摘
Nanosecond (ns) laser ablation may provide good solutions to many industrial silicon micromachining applications. However, most of the previous work is on lasers in ultraviolet (UV) or visible spectral ranges, and ns laser ablation of silicon at the infrared (IR) wavelength has not been well understood, particularly for long ns pulses with durations on the order of ?00 ns. IR ns lasers often have lower costs and less external energy consumption for the same laser energy output than UV or visible lasers, which is desirable for many practical applications. This paper aims to understand the mechanism of IR ns laser ablation of silicon, by combining time-resolved experimental observations with physics-based modeling study. The observation is through a ns-gated intensified charged-coupled devices (ICCD) camera coupled with a microscope tube, while the model is based on two-dimensional (2D) gas dynamic equations for the gaseous phases coupled with the condensed phase heat transfer equation through the Knudsen layer relations. The research shows that the material removal mechanism under the studied laser ablation conditions is surface vaporization in the early stage (yielding a plasma plume above the target), followed by subsequent liquid ejection. The measured plasma front propagation matches reasonably well with the model prediction. The experimentally observed spatial distribution of the plasma radiation intensity is consistent with and has been understood through the model. The study also shows that the observed liquid ejection is induced by the total surface pressure difference between the near-boundary region of the target melt pool and the other remaining region of the pool. The pressure difference is mainly due to the surface vaporization flux drop after laser pulse ends.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700