Homocysteine and copper induce cellular apoptosis via caspase activation and nuclear translocation of apoptosis-inducing factor in neuronal cell line SH-SY5Y
详细信息    查看全文
文摘
Hyperhomocysteinemia has been implicated in dementia and neurodegenerative disease. Physiological homocysteine concentrations did not result in apoptosis in SH-SY5Y cells in the present study. The apoptosis was recognized in millimolar level of homocysteine. However, SH-SY5Y cell death was observed following exposure to micromolar level of homocysteine in combination with copper. Exposure to 250 μM homocysteine and 10 μM CuCl2 for one day decreased cell viability by 40 % . Homocysteine and copper caused apoptosis, because hallmarks of apoptosis were recognized, such as loss of mitochondrial membrane potential, TUNEL-positive cells, release of cytochrome c from mitochondria, and caspase-3 activation, but not nucleosomal DNA fragmentation. Homocysteine and copper generated the intracellular reactive oxygen species, and homocysteine and copper-induced apoptosis was due to an accumulation of intracellular reactive oxygen species, which was inhibited by catalase. Pan-caspase inhibitor, z-VAD-fmk, could not completely inhibited homocysteine and copper-induced cell death. Homocysteine and copper also caused the nuclear translocation of apoptosis-inducing factor. These results suggested that homocysteine and copper induced not only caspase-dependent apoptosis but also caspase-independent apoptosis-inducing factor related apoptosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700