Study of spray cooling of a pressure vessel head of a boiling water reactor
详细信息    查看全文
文摘
The present paper deals with a theoretical analysis of the spray cooling of a Reactor Pressure Vessel (RPV) head in a Boiling Water Reactor (BWR). To this end a detailed computational model has been developed. The model predicts the trajectories, diameters and temperatures of subcooled droplets moving in saturated vapor. The model has been validated through comparison with experimental data, in which droplet temperatures were measured as functions of the distance that they cover in saturated vapor from the moment they leave the sprinkler outlet to the moment they impact on the RPV head inner wall. The calculations are in very good agreement with measurements, confirming the model adequacy for the present study. The model has been used for a parametric study to investigate the influence of several parameters on the cooling efficiency of the spray system. Based on the study it has been shown that one of the main parameters that govern the temperature increase in a subcooled droplet is its initial diameter. Comparisons are also made between conclusions from the theoretical model and observations made through flow and temperature measurements in the plant (Forsmark 1 and 2). One of these observations is that the rate at which the RPV head temperature decreases on the way down from hot to cold standby is constant and independent of the sprinkling flow rate as long as the flow rate is above a certain minimum value. Accordingly, the theoretical model shows that if one assumes that the cooling of the RPV head is through a water film built on the inner wall due to sprinkling, the heat removal rate is only very weakly dependent on the sprinkling flow rate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700