Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration
详细信息    查看全文
文摘
Concentrating sugars using membrane separation, followed by ethanol fermentation by recombinant xylose-assimilating Saccharomyces cerevisiae, is an attractive technology. Three nanofiltration membranes (NTR-729HF, NTR-7250, and ESNA3) were effective in concentrating glucose, fructose, and sucrose from dilute molasses solution and no permeation of sucrose. The separation factors of acetate, formate, furfural, and 5-hydroxymethyl furfural, which were produced by dilute acid pretreatment of rice straw, over glucose after passage through these three membranes were 3.37-11.22, 4.71-20.27, 4.32-16.45, and 4.05-16.84, respectively, at pH 5.0, an applied pressure of 1.5 or 2.0 MPa, and 25 ¡ãC. The separation factors of these fermentation inhibitors over xylose were infinite, as there was no permeation of xylose. Ethanol production from approximately two-times concentrated liquid hydrolysate using recombinant S. cerevisiae was double (5.34-6.44 g L-1) that compared with fermentation of liquid hydrolysate before membrane separation (2.75 g L-1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700