The N-terminal rhodanese domain from Azotobacter vinelandii has a stable and folded structure independently of the C-terminal domain
详细信息    查看全文
文摘
Sulfurtransferase are enzymes involved in the formation, conversion and transport of compounds containing sulfane-sulfur atoms. Although the three-dimensional structure of the rhodanese from the nitrogen-fixing bacterium Azotobacter vinelandii is known, the role of its two domains in the protein conformational stability is still obscure. We have evaluated the susceptibility to proteolytic degradation of the two domains of the enzyme. The two domains show different resistance to the endoproteinases and, in particular, the N-terminal domain shows to be more stable to digestion during time than the C-terminal one. Cloning and overexpression of the N-terminal domain of the protein was performed to better understand its functional and structural role. The recombinant N-terminal domain of rhodanese A. vinelandii is soluble in water solution and the spectroscopic studies by circular dichroism and heteronuclear NMR spectroscopy indicate a stable fold of the protein with the expected α/β topology. The results indicate that this N-terminal domain has already got all the elements necessary for an C-terminal domain independent folding. Its solution structure by NMR, actually under course, will be a valid contribution to understand the role of this domain in the folding process of the sulfurtransferase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700