One-pot terpolymerization of CO2, cyclohexene oxide and maleic anhydride using a highly active heterogeneous double metal cyanide complex catalyst
详细信息    查看全文
文摘
This paper describes a convenient one-pot terpolymerization of CO2, cyclohexene oxide (CHO) and maleic anhydride (MAH) to afford a poly (ester-carbonate) with a low content of ether units (2.9–4.3 mol % ) using a highly active Zn–Co(III) double metal cyanide complex (DMCC) catalyst. Terpolymerization was carried out in tetrahydrofuran (THF) at 75–90 °C and 1.0–4.0 MPa and no cyclic carbonate was observed in NMR spectra. The number-average molecular weight (Mn) of the terpolymer was up to 14.1 kg/mol with a narrow molecular weight distribution of 1.4–1.7. The apparent efficiency of the catalyst was up to 12.7 kg polymer/g Zn, representing the highest catalytic activity for terpolymerization of CO2, epoxides and cyclic anhydrides to date. THF dramatically inhibited polyether formation in this terpolymerization owing to its nucleophilicity towards the Zn2+ center of Zn–Co (III) DMCC. This presents the first example of solvent-assisted selectivity for inhibiting ether units in CO2 polymerization catalyzed by a heterogeneous system. Kinetic analyses of MAH/CHO/CO2 terpolymerization (MAH/CHO 0.2) suggested that polyester production was slightly faster than polycarbonate production in the early stage. A mechanism for this terpolymerization catalyzed by Zn–Co (III) DMCC catalyst was proposed. Moreover, addition of small amounts of MAH (MAH/CHO molar ratio ≤0.2) during CO2/CHO copolymerization can improve the thermal properties of the resultant terpolymers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700