Graph-theoretic analysis of multistationarity using degree theory
详细信息    查看全文
文摘
Biochemical mechanisms with mass action kinetics are often modeled by systems of polynomial differential equations (DE). Determining directly if the DE system has multiple equilibria (multistationarity) is difficult for realistic systems, since they are large, nonlinear and contain many unknown parameters. Mass action biochemical mechanisms can be represented by a directed bipartite graph with species and reaction nodes. Graph-theoretic methods can then be used to assess the potential of a given biochemical mechanism for multistationarity by identifying structures in the bipartite graph referred to as critical fragments. In this article we present a graph-theoretic method for conservative biochemical mechanisms characterized by bounded species concentrations, which makes the use of degree theory arguments possible. We illustrate the results with an example of a mitogen-activated protein kinases (MAPK) network.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700