Experimental investigation of surface roughness effects on flow behavior and heat transfer characteristics for circular microchannels
详细信息    查看全文
文摘
This paper experimentally investigates the effect of surface roughness on flow and heat transfer characteristics in circular microchannels. All test pieces include 44 identical, parallel circular microchannels with diameters of 0.4 mm and 10 mm in length. The surface roughness of the microchannels is Ra = 0.86, 0.92, 1.02 μm, and the Reynolds number ranges from 150 to 2800. Results show that the surface roughness of the circular microchannels has remarkable effects on the performance of flow behavior and heat transfer. It is found that the Poiseuille and Nusselt numbers are higher when the relative surface roughness is larger. For flow behavior, the friction factor increases consistently with the increasing Reynolds number, and it is larger than the constant theoretical value for macrochannels. The Reynolds number for the transition from laminar to turbulent flow is about 1500, which is lower than the value for macrochannels. For the heat transfer property, Nusselt number also increases with increasing Reynolds number, and larger roughness contributes to higher Nusselt number.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700