Effects of altered expression of LEAFY COTYLEDON1 and FUSCA3 on microspore-derived embryogenesis of Brassica napus L.
详细信息    查看全文
文摘
Brassica napus (Bn) microspore-derived embryogenesis has become a model system to study basic aspects of plant development. Recognized transcription factors governing embryogenesis include: FUSCA3 (FUS3), a member of the plant-specific B3-domain family, and LEAFY COTYLEDON1 (LEC1), a member of the HAP3 subunit of the CCAAT binding factor family. The effects of altered expression of both genes were investigated during microspore-derived embryogenesis in established B. napus lines over-expressing or down-regulating BnLEC1, as well as in tilling lines where BnFUS3 was mutated. While over-expression of BnLEC1 decreases the yield of microspore-derived embryos (MDEs) without affecting their ability to regenerate plants, suppression of BnLEC1 or BnFUS3 reduced both embryo number and regeneration frequency. Embryos produced by these lines showed structural abnormalities accompanied by alterations in the expression of several embryogenesis-marker genes. Oil accumulation was also altered in the transgenic MDEs. Total oil content was increased in MDEs over-expressing BnLEC1 and decreased in those suppressing BnLEC1 or BnFUS3. Mutation of BnFUS3 also resulted in a small but significant increase in linoleic (C18:2) acid. Together this study demonstrates the crucial role of BnLEC1 and BnFUS3 during in vitro embryogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700