A DSP-based modified slip energy recovery drive using a 12-pulse converter and shunt chopper for a speed control system of a wound rotor induction motor
详细信息    查看全文
文摘
This paper introduces a modified slip energy recovery drive system for speed control of a wound rotor induction motor offering improvement of drive performance, particularly line power factor and overall system efficiency. A 12-pulse line commutated thyristor converter operating in an inverter mode in conjunction with an additional IGBT shunt chopper is employed to transfer slip energy back to ac mains supply via three phase transformers. This approach offers motor speed control by varying the duty cycle of the chopper instead of changing the inverter firing angle. As a consequence, supply power factor can be improved. The servo state feedback designed by linear quadratic regulator (LQR) with observer is also included in order to keep motor speed to be constant over a certain range of operating conditions by using the estimated dc link current derived from motor speed. The advantage of this technique is absence of current transducers for current feedback control loop. The overall control system is implemented on DSP, DS1104’TMS320F240 controller board. Experimental results are illustrated in order to validate performance of the proposed system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700