In vivo depletion of CD4+CD25+ regulatory T cells in cats
详细信息    查看全文
文摘
To establish a characterized model of regulatory T cell (Treg) depletion in the cat we assessed the kinetics of depletion and rebound in peripheral and central lymphoid compartments after treatment with anti-CD25 antibody as determined by cell surface markers and FOXP3 mRNA expression. An 82 % decrease in circulating CD4+CD25+ Tregs was observed by day 11 after treatment. CD4+CD25+ cells were also reduced in the thymus (69 % ), secondary lymphoid tissues (66 % ), and gut (67 % ). Although CD4+CD25+ cells rebound by day 35 post-treatment, FOXP3 levels remain depressed suggesting anti-CD25 antibody treatment has a sustainable diminutive effect on the Treg population. To determine whether CD25+ Treg depletion strategies also deplete activated CD25+ effector cells, cats were immunized with feline immunodeficiency virus (FIV) p24-GST recombinant protein, allowing them to develop a measurable memory response, prior to depletion with anti-CD25 antibody. Anti-FIV p24-GST effector cell activity in peripheral blood after depletion was sustained as determined by antigen-specific T cell proliferation and humoral responses against FIV p24-GST with an ELISA for antigen-specific feline IgG. Furthermore, development of an anti-mouse response in Treg-depleted cats was similar to control levels indicating the retained capacity to respond to a novel antigen. We conclude that despite alterations in CD25+ cell levels during depletion, the feline immune system remains functional. We demonstrate here a model for the study of disease pathogenesis in the context of reduced numbers of immunosuppressive CD4+CD25+ Tregs throughout the feline immune system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700