Enceladus: A hypothesis for bringing both heat and chemicals to the surface
详细信息    查看全文
文摘
The eruptive plumes and large heat flow (¡«15 GW) observed by Cassini in the South Polar Region of Enceladus may be expressions of hydrothermal activity inside Enceladus. We hypothesize that a subsurface ocean is the heat reservoir for thermal anomalies on the surface and the source of heat and chemicals necessary for the plumes. The ocean is believed to contain dissolved gases, mostly CO2 and is found to be relatively warm (¡«0 ¡ãC). Regular tidal forces open cracks in the icy crust above the ocean. Ocean water fills these fissures. There, the conditions are met for the upward movement of water and the dissolved gases to exsolve and form bubbles, lowering the bulk density of the water column and making the pressure at its bottom less than that at the top of the ocean. This pressure difference drives ocean water into and up the conduits toward the surface. This transportation mechanism supports the thermal anomalies and delivers heat and chemicals to the chambers from which the plumes erupt. Water enters these chambers and there its bubbles pop and loft an aerosol mist into the ullage. The exiting plume gas entrains some of these small droplets. Thus, nonvolatile chemical species in ocean water can be present in the plume particles. A CO2 equivalent-gas molar fraction of ¡«4 ¡Á 10?4 for the ocean is sufficient to support the circulation. A source of heat is needed to keep the ocean warm at ¡«0 ¡ãC (about two degrees above its freezing point). The source of heat is unknown, but our hypothesis is not dependent on any particular mechanism for producing the heat.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700