Specificity for Homooligomer versus Heterooligomer Formation in Integrin Transmembrane Helices
详细信息    查看全文
文摘
Transmembrane (TM) helices engage in homomeric and heteromeric interactions that play essential roles in the folding and assembly of TM proteins. However, features that explain their propensity to interact homomerically or heteromerically and determine the strength of these interactions are poorly understood. Integrins provide an ideal model system for addressing these questions because the TM helices of full-length integrins interact heteromerically when integrins are inactive, but isolated TM helices are also able to form homodimers or homooligomers in micelles and bacterial membranes. We sought to determine the features defining specificity for homointeractions versus heterointeractions by conducting a comprehensive comparison of the homomeric and heteromeric interactions of integrin αIIbβ3 TM helices in biological membranes. Using the TOXCAT assay, we found that residues V700, M701, A703, I704, L705, G708, L709, L712, and L713, which are located on the same face of the β3 helix, mediate homodimer formation. We then characterized the β3 heterodimer by measuring the ability of β3 helix mutations to cause ligand binding to αIIbβ3. We found that mutating V696, L697, V700, M701, A703. I704, L705, G708, L712, and L713, but not the small residue–X3–small residue motif S699–X3–A703, caused constitutive αIIbβ3 activation, as well as persistent focal adhesion kinase phosphorylation dependent on αIIbβ3 activation. Because αIIb and β3 use the same face of their respective TM helices for homomeric and heteromeric interactions, the interacting surface on each has an intrinsic “stickiness” predisposing towards helix–helix interactions in membranes. The residues responsible for heterodimer formation comprise a network of interdigitated side chains with considerable geometric complementarity; mutations along this interface invariably destabilize heterodimer formation. By contrast, residues responsible for homomeric interactions are dispersed over a wider surface. While most mutations of these residues are destabilizing, some stabilized homooligomer formation. We conclude that the αIIbβ3 TM heterodimer shows the hallmark of finely tuned heterodimeric interaction, while homomeric interaction is less specific.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700