Fuzzy nonlinear regression analysis using a random weight network
详细信息    查看全文
文摘
Modeling a fuzzy-in fuzzy-out system where both inputs and outputs are uncertain is of practical and theoretical importance. Fuzzy nonlinear regression (FNR) is one of the approaches used most widely to model such systems. In this study, we propose the use of a Random Weight Network (RWN) to develop a FNR model called FNRRWN, where both the inputs and outputs are triangular fuzzy numbers. Unlike existing FNR models based on back-propagation (BP) and radial basis function (RBF) networks, FNRRWN does not require iterative adjustment of the network weights and biases. Instead, the input layer weights and hidden layer biases of FNRRWN are selected randomly. The output layer weights for FNRRWN are calculated analytically based on a derived updating rule, which aims to minimize the integrated squared error between α-cut sets that correspond to the predicted fuzzy outputs and target fuzzy outputs, respectively. In FNRRWN, the integrated squared error is solved approximately by Riemann integral theory. The experimental results show that the proposed FNRRWN method can effectively approximate a fuzzy-in fuzzy-out system. FNRRWN obtains better prediction accuracy in a lower computational time compared with existing FNR models based on BP and RBF networks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700