Homology modeling and molecular dynamics of CYP1A1 and CYP2B1 to explore the metabolism of aryl derivatives by docking and experimental assays
详细信息    查看全文
文摘
Since many drugs are metabolized by cytochrome P450 (CYP450), biotransformation studies using these enzymes are valuable in drug development. In this work, the biotransformation by CYP1A1 and CYP2B1 of two acetylcholinesterase (AChE) inhibitors, 4-(4′-hydroxy-phenylamino)-4-oxo propanoic acid (A) and 1H-pyrrolidine-1-(4′-hydroxy-phenyl)-2,5-dione (B), was investigated through docking and molecular dynamics (MD) simulations and by experimental methods using rat liver microsomes pretreated with β-naphthoflavone and phenobarbital (CYP1A1 and CYP2B1 inducers, respectively). The target proteins were initially built by homology modeling, and the resulting three-dimensional structures were refined by MD to obtain fifteen snapshots of each P450 isoform. These snapshots were used to dock compounds A and B as well as the reference compound acetaminophen (APAP). We confirmed that APAP produces a toxic intermediate (N-acetyl-p-benzoquinone imine) upon interaction of its amide group with the heme iron of CYP1A1. However, neither A nor B presented this kind of interaction within any snapshot with CYP1A1. On the other hand, when APAP, A and B were docked on CYP2B1, their hydroxyl group was located near the heme iron on the snapshot at 3.5 ns. Furthermore, B maintained the same position on all snapshots of this isoform. Therefore, theoretical results suggests that A and B do not generate toxic metabolites. These data were supported by HPLC analysis showing only one metabolite from A and B, which was identified by GC-MS as the hydroxylated product. Altogether, our results suggest that neither test compound is toxic.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700