Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: In vitro and in vivo studies
详细信息    查看全文
文摘
Macroporous elastic scaffolds containing gelatin (4 % or 10 % ) and 0.25 % hyaluronic acid (HA) were fabricated by cryogelation for application in adipose tissue engineering. These cryogels have interconnected pores (¡«200 ¦Ìm), high porosity (>90 % ) and a high degree of cross-linking (>99 % ). The higher gelatin concentration reduced the pore size, porosity and swelling ratio of the cryogel but improved its swelling kinetics. Compressive mechanical testing of cryogel samples demonstrated non-linear stress-strain behavior and hysteresis loops during loading-unloading cycles, but total recovery from large strains. The presence of more gelatin increased the elastic modulus, toughness and storage modulus and yielded a cryogel that was highly elastic, with a loss tangent equal to 0.03. Porcine adipose-derived stem cells (ADSCs) were seeded in the cryogel scaffolds to assess their proliferation and differentiation. In vitro studies demonstrated a good proliferation rate and the adipogenic differentiation of the ADSCs in the cryogel scaffolds, as shown by their morphological change from a fibroblast-like shape to a spherical shape, decreased actin cytoskeleton content, growth arrest, secretion of the adipogenesis marker protein leptin, Oil Red O staining for triglycerides and expression of early (LPL and PPAR¦Ã) and late (aP2 and leptin) adipogenic marker genes. In vivo studies of ADSCs/cryogel constructs implanted in nude mice and pigs demonstrated adipose tissue and new capillary formation, the expression of PPAR¦Ã, leptin and CD31 in immunostained explants, and the continued expression of adipocyte-specific genes. Both the in vitro and in vivo studies indicated that the gelatin/HA cryogel provided a structural and chemical environment that enabled cell attachment and proliferation and supported the biological functions and adipogenesis of the ADSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700