Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer
详细信息    查看全文
文摘
In this work, we report a remarkably improved toluene response and superior cross-sensitivity against H2S molecules by combining Pd catalysts and highly porous WO3 nanofibers (NFs). We functionalized Pd catalysts inside and/or outside of WO3 NFs synthesized by electrospinning, which is a facile and versatile process for producing webs of metal oxide NFs. Pd-embedded WO3 NFs were obtained by the electrospinning of a Pd and W composite precursor/poly(methyl methacrylate) (PMMA) solution followed by calcination at 700 掳C. Pd nanoparticles (NPs) (6-10 nm) synthesized by a polyol method were decorated on the WO3 NFs (Pd-NPs/WO3 NFs) by the attachment of the Pd NPs on as-prepared WO3 NFs. The gas sensing characteristics of pure WO3, Pd-embedded WO3, Pd-NPs/WO3, and Pd-NPs/Pd-embedded WO3 NFs were tested using H2S and toluene gases in a highly humid atmosphere (RH 90%), which is similar to human exhaled breath. The results showed that the Pd-NPs/Pd-embedded WO3 NFs whose inner and outer layers were decorated by Pd catalysts, exhibited a high toluene response (Rair/Rgas = 5.5 at 1 ppm) and remarkable selectivity against H2S (Rair/Rgas = 1.36 at 1 ppm) at 350 掳C, whereas pristine WO3 NFs showed superior H2S response (Rair/Rgas = 11.1 at 1 ppm) along with a negligible response toward toluene (Rair/Rgas = 1.27 at 1 ppm). The highly porous WO3 NFs decorated with Pd catalysts, exhibited potential feasibility, i.e., a low limit of detection (LOD) of 20 ppb (Rair/Rgas = 1.32) at 350 掳C, for application in VOCs sensors, particularly for diagnoses of lung cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700