Hybrid machine learning forecasting of solar radiation values
详细信息    查看全文
文摘
The constant expansion of solar energy has made the accurate forecasting of radiation an important issue. In this work we apply Support Vector Regression (SVR), Gradient Boosted Regression (GBR), Random Forest Regression (RFR) as well as a hybrid method to combine them to downscale and improve 3-h accumulated radiation forecasts provided by Numerical Weather Prediction (NWP) systems for seven locations in Spain. We use either direct 3-h aggregated radiation forecasts or we build first global accumulated daily predictions and disaggregate them into 3-h values, with both approaches outperforming the base NWP forecasts. We also show how to disaggregate the 3-h forecasts into hourly values using interpolation based on clear sky (CS) theoretical and experimental radiation models, with the disaggregated forecasts again being better than the base NWP ones and where empirical CS interpolation yields the best results. Besides providing ample background on a problem that offers many opportunities to the Machine Learning (ML) community, our study shows that ML methods or, more generally, hybrid artificial intelligence systems are quite effective and, hence, relevant for solar radiation prediction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700