Fourier-transform far-infrared spectroscopic ellipsometry for standoff material identification
详细信息    查看全文
文摘
The ellipsometry is an efficient method to determine the optical properties of matter. It has been largely employed with grating spectrometers in the visible, UV and near-infrared ranges for the characterization of thin films, surfaces and interfaces. In the mid- and far-infrared, where most substance-specific absorption lines are present, spectroscopic ellipsometry with Fourier-transform spectrometers is still not extended as a routine method. In particular, the lack of powerful sources in the far-infrared/terahertz range has prevented standoff application of this method. We will show that it is possible to measure the complex dielectric constant of a solid in the far-infrared and terahertz range by a reflection experiment with polarized light and ellipsometric analysis with a suitable calibration procedure. Extraction of terahertz synchrotron radiation from storage rings provides a suitable source for research-grade experiments. The optical constants determined by ellipsometry compare well with those obtained by Kramers–Kronig procedures, a method which, however, requires broader frequency range and absolute reflectance standard. We will present the case of remote spectroscopic identification of explosive materials, which is relevant for forthcoming security applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700