Atom and molecule emission caused by ion impact into a frozen oxygen target: Role of rovibrational excitation
详细信息    查看全文
文摘
Translational energy distributions of particles sputtered by 750 eV Ne+ ion impact into a cryogenic O2 target are studied using molecular-dynamics simulation. When comparing the energy distribution of emitted molecules to a Thompson distribution, good agreement can only be found for energies m>Em> with , where m>Um> is the surface binding and m>Dm> the dissociation energy of oxygen molecules. At smaller energies, a strong spike contribution enhances the spectrum. At higher energies ( eV), simulation shows a deficiency in sputtered molecules compared to the Thompson distribution; we show that this can be traced back to the decay of highly rovibrationally excited molecules after emission. Around 2% of the sputtered particles consist of radicals (atomic O). These originate from direct projectile-molecule collisions; they are emitted early in the collision cascade and feature a strong high-energy contribution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700