Superplasticity of Inconel 718 after processing by high-pressure sliding (HPS)
详细信息    查看全文
文摘
This study reports a production of a superplastic Ni-based superalloy (Inconel 718) using a process of severe plastic deformation through high-pressure sliding (HPS). The grain size of the alloy was reduced to ~120 nm by operating the HPS process under 4 GPa at room temperature with a recently upscaled facility. The ultrafined-grained structure was well retained even after annealing at 1173 K for 1 h. Tensile tests were conducted in air at a testing temperature in the range of 973–1173 K with an initial strain rate of 5.0×10−4–2.0×10−2 s−1. Superplastic elongation more than 400% were attained at all testing conditions except at 973 K. High-strain rate superplasticity (defined with strain rates higher than 1×10−2 s−1) was achieved at temperatures higher than 1073 K. Electron back scatter diffraction analyses revealed that a preferential orientation of the grains was developed by the HPS processing but it was randomized with tensile deformation. Evaluation of the strain rate sensitivity and the activation energy for the superplastic deformation confirmed that the superplasticity of Inconel 718 was controlled by grain boundary sliding through lattice diffusion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700