Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators
详细信息    查看全文
文摘
We investigate the influence of conductor network composites (CNCs) on the electromechanical performance of the ionic polymer conductor network composite (IPCNC) actuators fabricated by the direct assembly method with ionic liquids as the solvent. It was observed that the newly developed IPCNCs with the layer-by-layer (LbL) self-assembled Au nanocomposite CNC layers exhibit a high strain response (14 % peak-to-peak strain) in comparison with that of IPCNCs with the traditional RuO2/Nafion nanocomposite CNC layers (6 % peak-to-peak strain) under a 4 V DC signal. It is also observed that it is the slow ion transport process in the CNC layers that limits the IPCNC actuation speed and a thick CNC layer will result in a long ion transport time, slow actuation speed, as well as low efficiency. Making use of the fact that the LbL self-assembled nanocomposite CNCs can be made into thin layers (sub-micron) with high quality and large strain response, an IPCNC actuator with 0.4 μm thick of LbL CNC layers on 25 μm thick Nafion film exhibits an actuation response 0.2 s with large bending actuation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700