Regression methods for improved lifespan modeling of low voltage machine insulation
详细信息    查看全文
文摘
This paper deals with the modeling of insulation material lifespan in a partial discharge regime under certain accelerated electrical stresses (voltage, frequency and temperature). An original model, relating the logarithm of the insulation lifespan, the logarithm of the electrical stress and an exponential form of the temperature, is considered. An estimation of the model parameters is performed using three methods: the design of experiments (DoE) method, the response surface method (RSM) and the multiple linear regression (MLR) method. The estimation is obtained on learning sets determined according to each method specification. The performance, in terms of estimation, of each of the three methods is evaluated on a test set composed of additional experiments. For economic reasons and flexibility, the learning and test sets are composed of experiments carried out on twisted pairs of wires covered by an insulator varnish. The ability of the DoE and the RSM methods to organize and to limit the number of experiments is confirmed. The MLR method, however, shows more flexibility with regard to the studied configurations. Thus, it offers an efficient solution when organization is not required or not possible. Moreover, the flexibility of MLR allows specific ranges for the factors to be explored. A local analysis of the estimation performance shows that very short and long lifespans cannot be simultaneously represented by the same model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700