Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations
详细信息    查看全文
文摘
SNAP-25 is a SNARE protein implicated in exocytosis and in the negative modulation of voltage-gated calcium channels. We have previously shown that GABAergic synapses, which express SNAP-25 at much lower levels relative to glutamatergic ones, are characterized by a higher calcium responsiveness to depolarization and are largely resistant to botulinum toxin A. We show here that silencing of SNAP-25 in glutamatergic neurons, a procedure which increases KCl-induced calcium elevations, confers these synapses with toxin resistance. Since it is known that calcium reverts the efficacy of botulinum A, we investigated whether the lower effectiveness of the toxin in inhibiting GABAergic vesicle cycling might be attributable to higher evoked calcium transients of inhibitory neurons. We demonstrate that either expression of SNAP-251–197 or BAPTA/AM treatment, both inhibiting calcium dynamics, facilitate block of GABAergic vesicle exocytosis upon toxin treatment. These data indicate that intrinsic calcium dynamics control botulinum A susceptibility in distinct neuronal populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700