Computational and physical simulation of fluid flow inside a beam blank continuous casting mold
详细信息    查看全文
文摘
The main features of the flow field inside a beam blank continuous casting mold have been assessed through mathematical and physical modeling techniques. Experimental techniques such as particle dispersion through addition of dye and particle image velocimetry have been used in a physical model of the mold to assess the flow pattern. Different combinations of nozzle geometry and throughput have been employed and the experimental results have been analyzed. In the case of two tubular nozzles, which should ensure good thermal and flow symmetry, six vortices were observed in the mold, two near the web and two in each of the flanges. Increasing the flow rate of the fluid from 100 L/min to 150 L/min leads to a change from 0.74 m to 0.84 m in the jet penetration depth. However even a 67% increase of the nozzle cross section did not affect this parameter significantly. Experiments with one single tubular nozzle (53.2 mm inside diameter) were also carried out and the resulting flow asymmetry has been characterized. The difference in the fluid velocities at the filets could lead to unequal solid shell growth. The depth of jet penetration is larger than mold nominal length (0.8 m). Fluid flow structure as determined by PIV measurements and CFD simulations show a good agreement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700