Glacial geomorphology of the Victoria Valley System, Ross Sea Region, Antarctica
详细信息    查看全文
文摘
During the 2011-2012 austral summer, we had the opportunity to verify a surficial geology map prepared nearly 50 years ago for the Victoria Valley system (VVS), the largest of the McMurdo Dry Valleys. We used high-resolution landsat images and a digital elevation model to identify landforms and prepare detailed maps of each of the five valleys in the VVS, including lateral and end moraines, rock glaciers, gelifluction sheets, gravel ripples, and hummocky and ice-cored drifts. Our mapping suggests that the Bull drift is less extensive than previously thought, attains a maximum elevation of ~ 750 m in Balham and Barwick Valleys and the upper Bull Pass region, and does not occur in McKelvey Valley. We found Insel drift to 850 m elevation in eastern McKelvey Valley and upper Bull Pass and were able to trace Insel drift down Bull Pass where it becomes Peleus drift in Wright Valley. The Victoria Lower Glacier likely responded to grounding of ice in the Ross Embayment and was out-of-phase with alpine glaciers elsewhere in the VVS. We amplified and quantified Calkin's relative chronology and provide here our multiple-parameter relative chronology for the McMurdo Dry Valleys that is based on surface-boulder weathering, soil weathering, salt stage, degree of development of the desert pavement, and form of patterned ground. Except for Victoria Lower Valley, we correlate Packard drift with Taylor II drift (ca., 120 ka), Vida drift with Taylor III drift (ca., 300 ka), Bull drift with Taylor IVb drift (2.7-3.5 Ma, and Insel drift with Peleus drift (> 3.7 Ma, < 5.4 Ma). The lack of a strong correlation between soil salt stage and depth of visible salts with elevation leads us to question whether a high-level lake (ca., 200 m deep) existed in the VVS during the early Holocene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700