Fluid flow through active mud dome Mound Culebra offshore Nicoya Peninsula, Costa Rica: evidence from heat flow surveying
详细信息    查看全文
文摘
Mud extrusion is frequently observed as a dewatering phenomenon in compressional tectonic settings such as subduction zones. Along the Middle American Trench, several of these features have been recently discovered. This paper presents a heat flow study of actively venting Mound Culebra, offshore Nicoya Peninsula, and is complemented by data from geophysical surveys and coring. The mud diapir is characterised by methane emission and authigenic carbonate formation at its crest, and is composed of overconsolidated scaly clays and clast-bearing muds. Compared with the conductive background heat flow, the flux through the mud dome is elevated by 10–20 mW/m2, possibly related to advection of heat by fluids rising from greater depth. Decreased chlorinity in the pore waters from gravity cores may support a deep-seated fluid origin. Geothermal measurements across the mound and temperature measurements made with outriggers on gravity corers were corrected for the effects of thermal refraction, forced by the topography of the mound. Corrected values roughly correlate with the topography, suggesting advection of heat by fluids rising through the mound, thereby generating the prominent methane anomaly over the dome and nurturing vent biota. However, elevated values occur also to the southeast of the mound. We believe that the overconsolidated clays and carbonates on the crest form an almost impermeable lid. Fluids rising from depth underneath the dome are therefore partially channelled towards the flanks of the mound.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700